My library button
  • No image available

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers.

  • No image available

    Over the past two years noteworthy experimental and theoretical progress has been made towards the top-level scientific question for the U.S. program in Heavy Ion Fusion Science and High Energy Density Physics: ''How can heavy ion beams be compressed to the high intensity required to create high energy density matter and fusion conditions''? [1]. New results in transverse and longitudinal beam compression, beam-target interaction, high-brightness transport, beam production, as well as a new scheme in beam acceleration will be reported. Longitudinal and Transverse Beam Compression: The Neutralized Transport Experiment (NTX) demonstrated transverse beam density enhancement by a factor greater than 100 when an otherwise space-charge dominated ion beam was neutralized by a plasma source [2]. This experiment was followed by the Neutralized Drift Compression Experiment (NDCX) in which an ion beam was longitudinally compressed by a factor of 50 [3]. This was accomplished by applying a linear head-to-tail velocity ''tilt'' to the beam, and then allowing the beam to drift through a meter-long neutralizing plasma. In both the transverse and longitudinal experiments, extensive 3-D simulations, using LSP, were carried out, and the agreement with experiments was excellent [4]. A three-dimensional kinetic model for longitudinal compression was developed, and it was shown that the Vlasov equation possesses a class of exact solutions for the problem [5]. Beam-Target Interaction: We have also made significant progress in identifying the unique role ion beams can play in heating material to warm dense matter (WDM) conditions. We have identified promising accelerator, beam, and target configurations, as well as new experiments on material properties. It is shown that the target temperature uniformity can be maximized if the ion energy at target corresponds to the maximum in the energy loss rate dE/dX [6]. Ions of moderate energy (a few to tens of MeV) may be used. The energy must be deposited in times much shorter than the hydrodynamic expansion time (ns for metallic foams at 0.01 to 0.1 times solid density). Hydrodynamic simulations [7] have confirmed that uniform conditions with temperature variations of less than a few per cent can be achieved. High-Brightness Transport: Unwanted electrons can lead to deleterious effects for high-brightness ion beam transport. We are studying electron accumulation in quadrupole and solenoid beam transport systems. Electrons can originate from background gas ionization, from beam-tubes struck by ions near grazing incidence, and from end-walls struck by ions near normal incidence [8]. In parallel with the experimental campaign, we have developed and implemented in WARP 3D a new approach to large time-step advancement of electron orbits, as well as a comprehensive suite of models for electrons, gas, and wall interactions [9]. If sufficient electrons are accumulated within the beam, severe distortion of the beam phase space can result. Simulations of this effect have reproduced the key features observed in the experiments. Beam Production: The merging-beamlet injector experiment recently completed demonstrates the feasibility of a compact, high-current injector for heavy ion fusion drivers. In our experiment, 119 argon ion beamlets at 400 keV beam energy were merged into an electrostatic quadrupole channel to form a single beam of 70 mA. The measured unnormalized transverse emittance (phase space area) of 200-250 mm-mrad for the merged beam met fusion driver requirement. These measurements are in good agreement with our particle-in-cell simulations using WARP3D [10]. We have also completed the physics design of a short-pulse injector suitable for WDM studies. Beam Acceleration: A new concept for acceleration, the Pulse Line Ion Accelerator PLIA [11], offers the potential of a very low cost accelerator for WDM studies. It is based on a traveling wave structure, using a simple geometry with a helical conductor. We have obtained experimental verification of the predicted PLIA beam dynamics. Measured energy gain, longitudinal phase space, and beam bunching are in good agreement with WARP3D simulations. Computational Models and Simulator Experiments: The pioneering merger of Adaptive Mesh Refinement and particle-in-cell methods [12] underlies much of the recent success of WARP3D. BEST, the Beam Equilibrium Stability and Transport code was optimized for massively parallel computers and applied to studies of the collective effects of 3D bunched beams [13] and the temperature-anisotropy instability [14]. Space-charge-dominated beam physics experiments relevant to long-path accelerators were carried out on the recently completed University of Maryland Electron Ring, and on the Paul Trap Simulator Experiment at PPPL.

  • No image available

    We report on an ongoing study on modular Heavy Ion Fusion drivers. The modular driver is characterized by 10 to 20 nearly identical induction linacs, each carrying a single high current beam. In this scheme, the Integrated Research Experiment (IRE) can be one of the full size induction linacs. Hence, this approach offers significant advantages in terms of driver development path. For beam transport, these modules use solenoids which are capable of carrying high line charge densities, even at low energies. A new injector concept allows compression of the beam to high line densities right at the source. The final drift compression is performed in a plasma, in which the large repulsive space charge effects are neutralized. Finally, the beam is transversely compressed onto the target, using either external solenoids or current-carrying channels (in the Assisted Pinch Mode of beam propagation). We will report on progress towards a self-consistent point design from injector to target. Considerations of driver architecture, chamber environment as well as the methodology for meeting target requirements of spot size, pulse shape and symmetry will also be described. Finally, some near-term experiments to address the key scientific issues will be discussed.

  • No image available

    Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation domain, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this technique with plasma Particle-In-Cell simulations, and present examples of application in Heavy Ion Fusion and related fields which illustrate the effectiveness of the approach. We also report on the status of a collaboration under way at Lawrence Berkeley National Laboratory between the Applied Numerical Algorithms Group (ANAG) and the Heavy Ion Fusion group to upgrade ANAG's mesh refinement library Chombo to include the tools needed by Particle-In-Cell simulation codes.

  • No image available

  • No image available

    To provide a compact high-brightness heavy-ion beam source for Heavy Ion Fusion (HIF), we have been experimenting with merging multi-beamlets in an injector which uses an RF plasma source. An array of converging beamlets was used to produce a beam with the envelope radius, convergence, and ellipticity matched to an electrostatic quadrupole (ESQ) channel. Experimental results were in good quantitative agreement with simulation and have demonstrated the feasibility of this concept. The size of a driver-scale injector system using this approach will be several times smaller than one designed using traditional single large-aperture beams. The success of this experiment has possible significant economical and technical impacts on the architecture of HIF drivers.

  • No image available

    A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment of a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.

  • No image available

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport; and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by> 50 X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. They are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy.

  • No image available

    Modern diagnostic techniques provide detailed information on beam conditions in injector, transport, and final focus experiments in the HIF-VNL. Parameters of interest include beam current, beam energy, transverse and longitudinal distributions, emittance, and space charge neutralization. Imaging techniques, based on kapton films and optical scintillators, complement and in some cases, may replace conventional techniques based on slit scans. Time-resolved optical diagnostics that provide 4-D transverse information on the experimental beams are in operation on the existing experiments. Current work includes a compact optical diagnostic suitable for insertion in transport lines, improved algorithms for optical data analysis and interpretation, a high-resolution electrostatic energy analyzer, and an electron beam probe. A longitudinal diagnostic kicker generates longitudinal space-charge waves that travel on the beam. Time of flight of the space charge waves and an electrostatic energy analyzer provide an absolute measure of the beam energy. Special diagnostics to detect secondary electrons and gases desorbed from the wall have been developed.

  • No image available

    We are developing high-current-density high-brightness sources for Heavy Ion Fusion applications. Heavy ion driven inertial fusion requires beams of high brightness in order to achieve high power density at the target for high target gain. At present, there are no existing ion source types that can readily meet all the driver HIF requirements, though sources exist which are adequate for present experiments and which with further development may achieve driver requirements. Our two major efforts have been on alumino-silicate sources and RF plasma sources. Experiments being performed on a 10-cm alumino-silicate source are described. To obtain a compact system for a HIF driver we are studying RF plasma sources where low current beamlets are combined to produce a high current beam. A 80-kV 20-{micro}s source has produced up to 5 mA of Ar{sup +} in a single beamlet. The extraction current density was 100 mA/cm{sup 2}. We present measurements of the extracted current density as a function of RF power and gas pressure, current density uniformity, emittance, and energy dispersion (due to charge exchange).