No image available
No image available
We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.
No image available
No image available
· 2005
Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers.
No image available
No image available
Results of recent modeling of tokamak edge plasma with the turbulence code BOUT are presented. In previous studies with BOUT the background profiles of plasma density and temperature were set as flux surface functions. However in the divertor region of a tokamak the temperature is typically lower and density is higher than those at the mid-plane. To account for this in the present study a poloidal variation of background plasma density and temperature is included to provide a more realistic model. For poloidally uniform profiles of the background plasma the calculated turbulence amplitude peaks near outer mid-plane, while in the divertor region the amplitude is small. However, present simulations show that as the background plasma profiles become more poloidally non-uniform the amplitude of density fluctuations, {tilde n}{sub i}, starts peaking in the divertor. It is found that in the divertor region the amplitude of n{sub i} fluctuations grows approximately linearly with the local density of the background plasma, n{sub i0}, while the amplitude of T{sub e} and {phi} fluctuations is positively correlated with the local electron temperature, T{sub e0}. Correlation analysis shows that plasma turbulence is isolated by the x-points.
No image available
No image available