No image available
· 2014
No image available
No image available
No image available
· 2017
No image available
· 2013
Abstract: Dystrophic epidermolysis bullosa, a severely disabling hereditary skin fragility disorder, is caused by mutations in the gene coding for collagen VII, a specialized adhesion component of the dermal-epidermal junction zone. Both recessive and dominant forms are known; the latter account for about 40% of cases. Patients with dominant dystrophic epidermolysis bullosa exhibit a spectrum of symptoms ranging from mild localized to generalized skin manifestations. Individuals with the same mutation can display substantial phenotypic variance, emphasizing the role of modifying genes in this disorder. The etiology of dystrophic epidermolysis bullosa has been known for around two decades; however, important pathogenetic questions such as involvement of modifier genes remain unanswered and a causative therapy has yet to be developed. Much of the failure to make progress in these areas is due to the lack of suitable animal models that capture all aspects of this complex monogenetic disorder. Here, we report the first rat model of dominant dystrophic epidermolysis bullosa. Affected rats carry a spontaneous glycine to aspartic acid substitution, p.G1867D, within the main structural domain of collagen VII. This confers dominant-negative interference of protein folding and decreases the stability of mutant collagen VII molecules and their polymers, the anchoring fibrils. The phenotype comprises fragile and blister-prone skin, scarring and nail dystrophy. The model recapitulates all signs of the human disease with complete penetrance. Homozygous carriers of the mutation are more severely affected than heterozygous ones, demonstrating for the first time a gene-dosage effect of mutated alleles in dystrophic epidermolysis bullosa. This novel viable and workable animal model for dominant dystrophic epidermolysis bullosa will be valuable for addressing molecular disease mechanisms, effects of modifying genes, and development of novel molecular therapies for patients with dominantly transmitted skin disease
No image available
No image available
· 2023
Abstract: Background Epidermolysis bullosa (EB) is a heterogeneous group of rare, difficult-to-treat, inherited multisystem diseases affecting epithelial integrity. Patients with EB are affected by mechanical fragility of epithelial surfaces including the skin and, as a result, extensive recurrent blistering is a characteristic of the condition. Chronic wounds predispose patients with EB to the development of squamous cell carcinoma, which is a major cause of premature death. Objectives EASE was a double-blind, randomized, vehicle-controlled, phase III study to determine the efficacy and safety of the topical gel Oleogel-S10 (birch triterpenes) in EB. EASE was funded by Amryt Research Limited. Methods Patients with dystrophic EB, junctional EB or Kindler EB and a target partial-thickness wound lasting ≥ 21 days and 9 months that was 10-50 cm2, were enrolled and randomized via computer-generated allocation tables 1 : 1 to Oleogel-S10 or control gel - both with standard-of-care dressings. Study gel was applied to all wounds at least every 4 days. The primary endpoint was the proportion of patients with first complete closure of target wound within 45 days.brbrResultsbrA total of 223 patients were enrolled and treated (109 treated with Oleogel-S10, 114 with control gel). The primary endpoint was met; Oleogel-S10 resulted in 41·3% of patients with first complete target wound closure within 45 days, compared with 28·9% in the control gel arm (relative risk 1·44, 95% confidence interval (CI) 1·01-2·05; P = 0·013). Adverse events (AEs) occurred with similar frequency for Oleogel-S10 (81·7%) compared with control gel (80·7%). AEs were predominantly of mild-to-moderate intensity (4·6% were severe).brbrConclusions
No image available
· 2020
No image available