No image available
· 2023
Abstract: Objective Exhausted T cells with limited effector function are enriched in chronic hepatitis B and C virus (HBV and HCV) infection. Metabolic regulation contributes to exhaustion, but it remains unclear how metabolism relates to different exhaustion states, is impacted by antiviral therapy, and if metabolic checkpoints regulate dysfunction. Design Metabolic state, exhaustion and transcriptome of virus-specific CD8+ T cells from chronic HBV-infected (n=31) and HCV-infected patients (n=52) were determined ex vivo and during direct-acting antiviral (DAA) therapy. Metabolic flux and metabolic checkpoints were tested in vitro. Intrahepatic virus-specific CD8+ T cells were analysed by scRNA-Seq in a HBV-replicating murine in vivo model of acute and chronic infection. Results HBV-specific (core18-27, polymerase455-463) and HCV-specific (NS31073-1081, NS31406-1415, NS5B2594-2602) CD8+ T cell responses exhibit heterogeneous metabolic profiles connected to their exhaustion states. The metabolic state was connected to the exhaustion profile rather than the aetiology of infection. Mitochondrial impairment despite intact glucose uptake was prominent in severely exhausted T cells linked to elevated liver inflammation in chronic HCV infection and in HBV polymerase455-463 -specific CD8+ T cell responses. In contrast, relative metabolic fitness was observed in HBeAg-negative HBV infection in HBV core18-27-specific responses. DAA therapy partially improved mitochondrial programmes in severely exhausted HCV-specific T cells and enriched metabolically fit precursors. We identified enolase as a metabolic checkpoint in exhausted T cells. Metabolic bypassing improved glycolysis and T cell effector function. Similarly, enolase deficiency was observed in intrahepatic HBV-specific CD8+ T cells in a murine model of chronic infection. Conclusion Metabolism of HBV-specific and HCV-specific T cells is strongly connected to their exhaustion severity. Our results highlight enolase as metabolic regulator of severely exhausted T cells. They connect differential bioenergetic fitness with distinct exhaustion subtypes and varying liver disease, with implications for therapeutic strategies
No image available
· 2021
No image available
No image available
· 2023
Abstract: Background & Aims Liver transplant recipients (LTRs) demonstrate a reduced response to COVID-19 mRNA vaccination; however, a detailed understanding of the interplay between humoral and cellular immunity, especially after a third (and fourth) vaccine dose, is lacking. Methods We longitudinally compared the humoral, as well as CD4+ and CD8+ T-cell, responses between LTRs (n = 24) and healthy controls (n = 19) after three (LTRs: n = 9 to 16; healthy controls: n = 9 to 14 per experiment) to four (LTRs: n = 4; healthy controls: n = 4) vaccine doses, including in-depth phenotypical and functional characterization. Results Compared to healthy controls, development of high antibody titers required a third vaccine dose in most LTRs, while spike-specific CD8+ T cells with robust recall capacity plateaued after the second vaccine dose, albeit with a reduced frequency and epitope repertoire compared to healthy controls. This overall attenuated vaccine response was linked to a reduced frequency of spike-reactive follicular T helper cells in LTRs. Conclusion Three doses of a COVID-19 mRNA vaccine induce an overall robust humoral and cellular memory response in most LTRs. Decisions regarding additional booster doses may thus be based on individual vaccine responses as well as evolution of novel variants of concern. Impact and implications Due to immunosuppressive medication, liver transplant recipients (LTR) display reduced antibody titers upon COVID-19 mRNA vaccination, but the impact on long-term immune memory is not clear. Herein, we demonstrate that after three vaccine doses, the majority of LTRs not only exhibit substantial antibody titers, but also a robust memory T-cell response. Additional booster vaccine doses may be of special benefit for a small subset of LTRs with inferior vaccine response and may provide superior protection against evolving novel viral variants. These findings will help physicians to guide LTRs regarding the benefit of booster vaccinations
No image available
· 2017
Abstract: The PNPLA3 p.I148M, TM6SF2 p.E167K, and MBOAT7 rs641738 variants represent genetic risk factors for nonalcoholic fatty liver disease (NAFLD). Here we investigate if these polymorphisms modulate both steatosis and fibrosis in patients with NAFLD. We recruited 515 patients with NAFLD (age 16-88 years, 280 female patients). Liver biopsies were performed in 320 patients. PCR-based assays were used to genotype the PNPLA3, TM6SF2, and MBOAT7 variants. Carriers of the PNPLA3 and TM6SF2 risk alleles showed increased serum aspartate aminotransferase and alanine transaminase activities (P 0.05). The PNPLA3 genotype was associated with steatosis grades S2-S3 (P 0.001) and fibrosis stages F2-F4 (P
No image available
No image available
· 2023
Abstract: Recent studies have linked proton pump inhibitor (PPI) treatment to increased complications of cirrhosis, such as bacterial infections and hepatic encephalopathy. However, the underlying pathophysiological mechanisms remain unclear. The present study investigated the hypothesis that PPI treatment may promote adverse effects in patients with advanced cirrhosis by affecting subclinical bacterial translocation (BT) from the gut into the portal venous bloodstream. Blood samples from the portal vein were obtained during implantation of a transjugular intrahepatic portosystemic shunt (TIPS) in a total of 80 cirrhosis patients with PPI treatment (PPI group, n = 57) and without PPI treatment (no-PPI group, n = 23). BT was identified using a 16S ribosomal RNA gene (V1V2 region) polymerase chain reaction. The microbiota composition in the portal venous blood samples was further analyzed by deep amplicon sequencing. Indeed, the prevalence of BT was significantly higher in the PPI group compared to the no-PPI group (86.0% vs 52.2%, P = 0.001). Importantly, this effect was not attributable to group differences in the severity of cirrhosis, parameters of portal hypertension, or medication. Microbiome analyses showed significantly increased alpha-diversity (Shannon) in the portal venous blood of the PPI group. Taxonomic analyses revealed significantly increased Streptococcus abundances in these patients. The present study reveals aggravated BT in patients with advanced cirrhosis and portal hypertension receiving PPI therapy. Increased BT could be an important pathomechanism contributing to the adverse effects of PPI treatment in patients with cirrhosis
No image available
· 2020
Abstract: During the early stages of the coronavirus disease 2019 (COVID-19) pandemic, EASL and ESCMID published a position paper to provide guidance for physicians involved in the care of patients with chronic liver disease. While some healthcare systems are returning to a more normal routine, many countries and healthcare systems have been, or still are, overwhelmed by the pandemic, which is significantly impacting on the care of these patients. In addition, many studies have been published focusing on how COVID-19 may affect the liver and how pre-existing liver diseases might influence the clinical course of COVID-19. While many aspects remain poorly understood, it has become increasingly evident that pre-existing liver diseases and liver injury during the disease course must be kept in mind when caring for patients with COVID-19. This review should serve as an update on the previous position paper, summarising the evidence for liver disease involvement during COVID-19 and providing recommendations on how to return to routine care wherever possible
No image available
No image available
· 2023
Abstract: Background: Acute-on-chronic liver failure (ACLF) is a fatal complication of cirrhosis. Hence, identification of risk factors for ACLF is crucial. Previous studies have linked proton pump inhibitor (PPI) treatment to complications of cirrhosis, however, a possible effect of PPI treatment on the risk of ACLF has not been investigated yet. Therefore, the present study aimed to characterize the impact of PPI treatment on ACLF development. Methods: A total of 642 patients hospitalized due to complications of cirrhosis were retrospectively identified, and PPI treatment during an observation period of 3 years following the hospitalization was reviewed. Subsequently, 74 patients with newly initiated PPI treatment at the time of hospitalization (PPI group) were 1:1 propensity score matched to 74 patients who received no PPI treatment (no-PPI group). Primary end point was the development of ACLF during the observation period, and secondary endpoints were mortality and upper gastrointestinal bleeding. Results: PPI and no-PPI groups had comparably severe chronic liver disease at baseline. Nevertheless, the cumulative incidence of ACLF in the presence of death as competing risk was markedly higher in the PPI group compared with the no-PPI group. ACLF-related deaths contributed significantly to a higher 3-year mortality in the PPI group. Uni and multivariable competing risk regression models confirmed that PPI treatment was an independent predictor of ACLF in the study collective (subdistribution HR: 1.892, 95% CI: 1.092-3.281, p = 0.023). The impact of PPI treatment on ACLF development was particularly strong in patients with a model for end-stage liver disease score >12. Upper gastrointestinal bleeding was slightly less frequent in the PPI group. Conclusions: The present results indicate that PPI treatment could be a risk factor for ACLF in patients with advanced cirrhosis